A Spectral Collocation Method for Eigenvalue Problems of Compact Integral Operators

نویسندگان

  • Can Huang
  • Hailong Guo
  • Zhimin Zhang
چکیده

We propose and analyze a new spectral collocation method to solve eigenvalue problems of compact integral operators, particularly, piecewise smooth operator kernels and weakly singular operator kernels of the form 1 |t−s|μ , 0 < μ < 1. We prove that the convergence rate of eigenvalue approximation depends upon the smoothness of the corresponding eigenfunctions for piecewise smooth kernels. On the other hand, we can numerically obtain a higher rate of convergence for the above weakly singular kernel for some μ’s even if the eigenfunction is not smooth. Numerical experiments confirm our theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new superconvergent collocation method for eigenvalue problems

Here we propose a new method based on projections for the approximate solution of eigenvalue problems. For an integral operator with a smooth kernel, using an interpolatory projection at Gauss points onto the space of (discontinuous) piecewise polynomials of degree ≤ r−1, we show that the proposed method exhibits an error of the order of 4r for eigenvalue approximation and of the order of 3r fo...

متن کامل

A Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions

In this paper‎, ‎a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly‎. ‎First‎, ‎the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs)‎. ‎Then‎, ‎the unknown functions are approximated by the hybrid functions‎, ‎including Bernoulli polynomials and Block-pulse functions based o...

متن کامل

Fast Spectral Collocation Method for Surface Integral Equations of Potential Problems in a Spheroid.

This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid. The layer densities are approximated by a spectral expansion of spherical harmonics and the spectral collocation method is then used to solve surface integral equations of potential problems in a spheroid. With the pr...

متن کامل

‎Solving Some Initial-Boundary Value Problems Including Non-classical ‎C‎ases of Heat Equation By Spectral and Countour Integral ‎Methods‎

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...

متن کامل

Computation of frequency responses for linear time-invariant PDEs on a compact interval

We develop mathematical framework and computational tools for calculating frequency responses of linear time-invariant PDEs in which an independent spatial variable belongs to a compact interval. In conventional studies this computation is done numerically using spatial discretization of differential operators in the evolution equation. In this paper, we introduce an alternative method that avo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012